Search results for "spatial map"

showing 7 items of 7 documents

Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis

2013

Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering.…

FOS: Computer and information sciencesDiffusion (acoustics)Computer sciencediffusion mapMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreMachine Learning (cs.LG)Computational Engineering Finance and Science (cs.CE)Correlation03 medical and health sciencesTotal variation0302 clinical medicineStatistics - Machine LearningVoxel0202 electrical engineering electronic engineering information engineeringComputer Science - Computational Engineering Finance and ScienceCluster analysisdimensionality reductionta113spatial mapsbusiness.industryDimensionality reductionfunctional magnetic resonance imaging (fMRI)Pattern recognitionIndependent component analysisSpectral clusteringComputer Science - Learningindependent component analysista6131020201 artificial intelligence & image processingArtificial intelligenceDYNAMICAL-SYSTEMSbusinesscomputer030217 neurology & neurosurgeryclustering
researchProduct

Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory

2021

Abstract This study undertook a comprehensive application of 15 data mining (DM) models, most of which have, thus far, not been commonly used in environmental sciences, to predict land susceptibility to water erosion hazard in the Kahorestan catchment, southern Iran. The DM models were BGLM, BGAM, Cforest, CITree, GAMS, LRSS, NCPQR, PLS, PLSGLM, QR, RLM, SGB, SVM, BCART and BTR. We identified 18 factors usually considered as key controls for water erosion, comprising 10 factors extracted from a digital elevation model (DEM), three indices extracted from Landsat 8 images, a sediment connectivity index (SCI) and three other intrinsic factors. Three indicators consisting of MAE, MBE, RMSE, and…

Hazard (logic)Hazard map010504 meteorology & atmospheric sciencesMean squared error04 agricultural and veterinary sciencesCatchment managementcomputer.software_genre01 natural sciencesShapley additive explanationsSupport vector machineErosionTopological index040103 agronomy & agricultureFeature (machine learning)Permutation feature importance measure0401 agriculture forestry and fisheriesSpatial mappingData miningDigital elevation modelGame theorycomputer0105 earth and related environmental sciencesEarth-Surface ProcessesMathematicsInterpretability
researchProduct

Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition

2014

Canonical polyadic decomposition (CPD) may face a local optimal problem when analyzing multi-subject fMRI data with inter-subject variability. Beckmann and Smith proposed a tensor PICA approach that incorporated an independence constraint to the spatial modality by combining CPD with ICA, and alleviated the problem of inter-subject spatial map (SM) variability.This study extends tensor PICA to incorporate additional inter-subject time course (TC) variability and to connect CPD and ICA in a new way. Assuming multiple subjects share common TCs but with different time delays, we accommodate subject-dependent TC delays into the CP model based on the idea of shift-invariant CP (SCP). We use ICA …

Independent component analysis (ICA)Speech recognitionModels NeurologicalMotor ActivityNeuropsychological TestsInter-subject variabilityta3112TimeMulti-subject fMRI dataFingersHumansCanonical polyadic decomposition (CPD)Computer SimulationMotor activityInvariant (mathematics)ta217ta113Brain MappingShift-invariant CP (SCP)General NeuroscienceBrainMagnetic Resonance ImagingIndependent component analysisAuditory PerceptionTensor PICASpatial mapsPsychologyAlgorithmJournal of Neuroscience Methods
researchProduct

Electrical Coupling in Ensembles of Nonexcitable Cells: Modeling the Spatial Map of Single Cell Potentials

2015

We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also ana…

Membrane potentialChemistryCellNanotechnologyCell CommunicationHydrogen-Ion ConcentrationModels BiologicalIon ChannelsMembrane PotentialsQuantitative Biology::Cell BehaviorSurfaces Coatings and FilmsCoupling (electronics)medicine.anatomical_structureMembraneMaterials ChemistrymedicineSpatial mapsPhysical and Theoretical ChemistryExtracellular SpaceLipid bilayerBiological systemElectromagnetic PhenomenaIon channelBiophysical chemistryThe Journal of Physical Chemistry B
researchProduct

ICA of full complex-valued fMRI data using phase information of spatial maps.

2015

Background ICA of complex-valued fMRI data is challenging because of the ambiguous and noisy nature of the phase. A typical solution is to remove noisy regions from fMRI data prior to ICA. However, it may be more optimal to carry out ICA of full complex-valued fMRI data, since any filtering or voxel-based processing may disrupt information that can be useful to ICA. New method We enable ICA of the full complex-valued fMRI data by utilizing phase information of estimated spatial maps (SMs). The SM phases are first adjusted to properly represent spatial phase changes of all voxels based on estimated time courses (TCs), and then these are used to segment the voxels into BOLD-related and unwant…

Spatial map phaseAdultComputer scienceIndependent component analysis (ICA)Neuroscience(all)computer.software_genreta3112030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineRobustness (computer science)VoxelImage Processing Computer-AssistedHumansComputer visionInfomaxPhase de-ambiguityta217ta113business.industryGeneral NeuroscienceComplex valuedBrainPattern recognitionMaximizationPhase positioningMagnetic Resonance ImagingComplex-valued fMRI dataPhase maskingSpatial mapsArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryPsychomotor PerformanceJournal of neuroscience methods
researchProduct

Geographic Information System of Primary Carbon Deposit of Mangrove Forest in Merauke District, Indonesia

2020

Emission factors with increasing carbon dioxide (CO2) originating from various human activities are one of the causes of global climate change. The mangrove forest is a type of plant that has a great ability to absorb carbon in the atmosphere and store it in biomass through photosynthesis. Merauke Regency has 20 separate parts based on regional administration, but primary Mangrove forests are only found in ten regions (district). The results of research carried out using geographic information systems (GIS) in processing primary Mangrove forest data based on 2016 land cover map data in Merauke district, the area of primary mangrove forest reaches 184.402 ha, which is spread in various regio…

lcsh:GE1-350Biomass (ecology)Geographic information systembusiness.industryGlobal warmingcarbon stockchemistry.chemical_elementClimate changeForestryLand covertropical mangrovechemistry.chemical_compoundclimate changechemistryCarbon dioxidespatial mapEnvironmental scienceMangrovebusinessCarbonlcsh:Environmental sciencesE3S Web of Conferences
researchProduct

Non-invasive Spatial Mapping of Frequencies in Atrial Fibrillation: Correlation With Contact Mapping

2021

[EN] Introduction: Regional differences in activation rates may contribute to the electrical substrates that maintain atrial fibrillation (AF), and estimating them non-invasively may help guide ablation or select anti-arrhythmic medications. We tested whether non-invasive assessment of regional AF rate accurately represents intracardiac recordings. Methods: In 47 patients with AF (27 persistent, age 63 +/- 13 years) we performed 57-lead non-invasive Electrocardiographic Imaging (ECGI) in AF, simultaneously with 64-pole intracardiac signals of both atria. ECGI was reconstructed by Tikhonov regularization. We constructed personalized 3D AF rate distribution maps by Dominant Frequency (DF) ana…

medicine.medical_specialtyPhysiologymedicine.medical_treatmentDriverBasket mapping030204 cardiovascular system & hematologyIntracardiac injectionlcsh:PhysiologyCorrelationTECNOLOGIA ELECTRONICA03 medical and health sciences0302 clinical medicineInternal medicinePhysiology (medical)medicineOriginal ResearchImatges tridimensionals en medicinalcsh:QP1-981Dominant frequencybusiness.industryNon invasiveSpatial mappingElectrocardiographic imagingAtrial fibrillationDominant frequencyAblationmedicine.diseaseAtrial fibrillationElectrocardiographic imagingNon-invasive mappingCardiologyEnginyeria biomèdicabusiness030217 neurology & neurosurgery
researchProduct